Dice table EXHIBIT DESIGN

A physical model of exponential distribution using dice

Team Members Subhash Chandra (CCE, IISc) Nidhi Joshi (CPDM, IISc)

Mentor Prof. Amit Apte (ICTS-TIFR)

Understanding the mathematics

What is probability?

DICE

CARDS

COINS

Exponential Distribution - The Math

• Formula for probability density function of the exponential distribution is – $f(x)=1/\beta e^{-(x-\mu)/\beta}$ where $x \ge \mu, \beta > 0$

 μ is locator parameter; β is scale parameter

- Where, μ =0 and β =1 Standard exponential distribution
- Formula for standard exponential distribution is -

$$f(x)=e^{-x} \qquad \text{for } x \ge 0$$

Exponential Distribution - An example

- 100 students in a class
- Professor gives a project to everyone
- 90% Happy with project allotted
- 10% Unhappy with project allotted
- Unhappy student visit professor to change the project again

In how many rounds does the professor can make everyone happy?

Exponential Distribution - Tree Representation

Exponential Distribution - The dice table

- 3 types of dice
 - 1 Blue + 5 Red
 - \circ 2 Blue + 4 Red
 - 3 Blue + 3 Red
- N = total no. of dice of each type

- 1^{st} throw, P (blue dice) = N x ($\frac{1}{6}$)
- 2^{nd} throw, P (blue dice) = N x ($\frac{1}{6}$) x ($\frac{5}{6}$)
- 3rd throw, P (blue dice) = N x (½) x (½) x (½)
- .
- •
- .
- k^{th} throw, P (blue dice) = N x (1/6) x (5/6)^{k-1}

Exponential Distribution - The dice table

Designing the exhibit

Current exhibit - MPE 2013

ISSUES

- Time consuming
- Effort intensive
- Heavy & Bulky
- Needs 3 setups
- No depiction of convergence
- Poor aesthetics

Exhibit Requirements

Issue Category	Understood Requirements	Understood Sub Requirements	Req #	D/W	
		Exhibit must have aesthetic value	R1	Wish	
Participant		Should depict the mathematical concept with clarity	R2	Demand	
Engagement	Exhibit must be engaging	Should allow interaction of the participant with the exhibit	R3	Demand	
		Reduce number of people required to conduct experiment	R4	Demand	
	Reduce effort required to	Reduce number of steps to conduct experiment	R5	Demand	
Participation Effort	conduct experiment	riment Reduce effort of each step of experiment Reduce effort of each step of experiment			
	Reduce time required to				
Participation time	conduct experiment	Time required for each step	R7	Demand	
		Height must be comfortable for kids and adults	R8	Demand	
		Colour combination to accommodate color blind participants	R9	Demand	
	Exhibit must be accessible to	Size of dice should be comfortable to press	R10	Demand	
Accessibility	all participants	Access points of exhibit (top view area) should be within reach	R11	Demand	

Exhibit Requirements

Issue Category	Understood Requirements	Understood Sub Requirements	Req #	D/W
		1ust not be damaged during transportation		Demand
		Must not be damaged during storage	R13	Demand
		st sustain interaction with participants during exhibition R		Demand
Ruggedness	Exhibit must be rugged	Must be able to sustain outdoor conditions	R15	Wish
		Should not require speciality tool	R16	Demand
	Easy to assemble/ disassemble	Should be able to assemble/ carried by single person	R17	Demand
Assembly	exhibit	Assembly sequence should be clear to follow	R18	Demand
Stand alone	Must function as an independent exhibit	Must function as an independent exhibit	R19	Wish
	Interaction with exhibit must be	Safe to assemble	R20	Demand
Safety	safe for participant	Safe when participant is interacting with it	R21	Demand
	Design and functioning should	Probability of throwing dice should not be affected	R22	Demand
Mathematic concept	not undermine depiction of mathematical concept	Side of dice thrown should not change when handling dice	R23	Demand

Requirements ranking

Req #	Understood Sub- requirement	Sum	Rank
R22	Probability of throwing dice should not be affected	15.5	1
R23	Side of dice thrown should not change when handling dice	15.5	2
R14	Must sustain interaction with participants during exhibition	13.5	3
R2	Should depict the mathematical concept with clarity	13	4
R3	Should allow interaction of the participant with the exhibit	13	5
R8	Height must be comfortable for kids and adults	13	6
R11	Access points of exhibit (top view area) should be within reach	12.5	7
R21	Safe when participant is interacting with it	12.5	8
R5	Reduce number of steps to conduct experiment	12	9
R7	Time required for each step	11.5	10

Requirements ranking

Req #	Understood Sub- requirement	Sum	Rank
R9	Colour combination to accommodate color blind participants	11.5	11
R6	Reduce effort of each step of experiment	10.5	12
R10	Size of dice should be comfortable to press	10	13
R4	Reduce number of people required to conduct experiment	6	14
R20	Safe to assemble	5.5	15
R12	Must not be damaged during transportation	4.5	16
R13	Must not be damaged during storage	3.5	17
R16	Should not require speciality tool	2.5	18
R18	Assembly sequence should be clear to follow	2	19
R17	Should be able to assemble/ carried by single person	2	20

Technical Requirements

TR #	Technical requirements	Units	Factors affected
T1	Number of dice of each type	nos.	Number of steps, Time, Effort
T2	Number of types of dice	nos.	Number of steps, Time, Effort
Т3	Dimensions of dice	mm x mm x mm	Ergonomics - Handling
Т3	Height of exhibit - Dice throwing surface	cm	Ergonomics - Height
T4	Dimensions of exhibit - Dice throwing surface	cm x cm	Ergonomics - Reach
Т6	Number of columns - Dice representation	nos.	Aesthetics, Mathematic concept
Т7	Cross section of column - Dice representation	mm x mm	Mathematic concept, Probability
T8	Max. height of column	cm	Mathematic concept, Probability
Т9	Weight of exhibit	kg	Ergonomics - Transport, Assembly

Requirements ranking

Req #	Understood Sub- requirement	Sum	Rank
R9	Colour combination to accommodate color blind participants	11.5	11
R6	Reduce effort of each step of experiment	10.5	12
R10	Size of dice should be comfortable to press	10	13
R4	Reduce number of people required to conduct experiment	6	14
R20	Safe to assemble	5.5	15
R12	Must not be damaged during transportation	4.5	16
R13	Must not be damaged during storage	3.5	17
R16	Should not require speciality tool	2.5	18
R18	Assembly sequence should be clear to follow	2	19
R17	Should be able to assemble/ carried by single person	2	20

SNPS

To design a **rugged** and **safe** exhibit which conveys the mathematical **concept of exponential distribution**, by **interacting** with exhibition participants requiring **minimum time** and **effort**, and high engagement.

Function Structure

Brainstorming

Assemble exhibit	it Fixed architecture		Modular design		Nut Bolt	Snug fit	
Instructions for							
experiment	Verbally exp	plained by exhibi	t personnel Poster explaini		ng the experiment and steps	Audio prompt at each step	
Randomizing the	Open bowl t	o mix and					
dice	throw		Salt shaker box		Magic ball lottery	Dice tower	
Throwing dice	By hand		Thrown from a contraption				
Identify blue dice	Visually		Image processing		Colour sensor		
	Manual counting (Point and					By measuring against a graduated	
Counting blue dice	count)		Colour sensor		By weight of separated dice	vertical scale	
				Elastic band		Robotic	Conveyor belt + Color
Separate blue dice	Hand pick	Magnetic lift	Velcro lift	matrix	Cross Pattern on plastic flex sheet	arm	sensor ID
Representing blue	Stacking of		LED light up	Marker on	Wire/ ribbon which adjusts to level		
dice	dice	Digital display	board	acrylic sheet	of stacks	Measuring	tape against the stack
					Have extra pieces of dice available	Have a conveyor pick up belt which	
Resetting	Spring loaded trap door at		Collect into box and load into		to do next experiment while this is	carries it up to the dice to mixing	
experiment	bottom of rep board		mixing mechanism		emptied	mechanism	
	LED screen	ED screen showing				Update each data entry to social	
Convergence	convergence by digitally		Sensor which measures the		Data entry interface for each	media/ cloud and have it show you the	
representation	sensing for each throw		height of the stack		experiment result	current convergence result.	

Final Concept

STEPS

- Put dice into Dice tower input
- Randomization through dice tower
- Exits from bottom of dice tower
- Visually locate blue dice
- Push through silicone membrane
- Collect blue dice into graduated beaker
- Stick beakers onto representation board
- Flip silicone membrane to collect red dice
- Repeat experiment till all dice appear as blue

Final Concept

FEATURES

- Dice tower
 - \circ See through
 - Randomized dice faces
- Dice separation
 - \circ Easy to push
 - \circ Fun activity
- Modular sub systems
 - Easy to store
 - Less space taken during transport

Work ahead

- Isolate problem with current MPE 2013 exhibit
- Generate concept designs
- Finish proof of concept Trials of dimensional variations on laser cutter
- Freeze final design dimensions based on trials
- Procure materials
- Fabrication
- Assembly of fabricated parts

Target date: 15th July 2018